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Abstract: In this paper the performance of scientific applications are discussed by using Python programming 
language. Firstly certain techniques and strategies are explained to improve the computational efficiency of serial 

Python codes. Then the basic programming techniques in Python for parallelizing scientific applications have been 

discussed. It is shown that an efficient implementation of array-related operations is essential for achieving better 

parallel [11] performance, as for the serial case. High performance can be achieved   in serial and parallel computation 

by using a mixed language programming in array-related operations [11]. This has been proved by a collection of 

numerical experiments. Python [13] is also shown to be well suited for writing high-level parallel programs in less 

number of lines of codes. 
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I  BACKGROUND AND INTRODUCTION 

 
Earlier there was a strong tradition among computational 

scientists to use compiled languages, in particular Fortran 

77 and C, for numerical [2] simulation. As there is 

increase in demand for software flexibility during the last 

decade, it has also popularized more advanced compiled 

languages C++ and FORTRAN 95. Whereas in recent 

days many computational scientists programmers and 

engineers have moved away from compiled languages to 

considered problem solving environments, for example: 

Maple, Octave, Matlab, and R (or S-Plus). Matlab has 

been very popular and is regarded as the preferred 
development [8] platform for numerical software by a 

significant portion of the of the Computational Science 

and Engineering community. Lots of the problems are 

solved in Matlab. It may seem a paradox that 

computational scientists, who claim to demand as high 

performance as possible in their applications, use Matlab. 

The success of Matlab and similar interpreted 

environments is due to: 
 

i. Integration of simulation and visualization 
ii. a simple and clean syntax of the command language 

iii. Built-in functions operating efficiently on arrays in 

compiled code  

iv. Interactive execution of commands with immediate 

feedback 

v. A rich standardized library of numerical 

functionality that is conveniently available 

vi. Numerical operations that are fast enough in plain 

Matlab[2] 

 

 
vii. Documentation and support 

 

Many scientists normally feel more productive in Matlab 

than with compiled languages and separate visualization 

tools. The programming language Python is now coming 

up as a potentially competitive alternative to Matlab, 

Octave, and other environments. Python, when extended 

with numericaland visualization modules, shares many of 

Matlab’s advantages are as mentioned above [2]. One of 

the particular advantage of Python is that the language is 

very rich and powerful, especially in comparison with 
Matlab, Fortran, and C. In particular, Python is an object-

oriented language that supports operator overloading and 

offers a cross-platform interface to operator system 

functionality. Advanced C++ programmers can easily 

mirror their software designs in Python and even obtain 

more flexibility and elegance.  
 

Although Matlab supports object-oriented programming 

but creating classes in Python is much more convenient. 

Convenience seems to be a key issue when scientists 

choose an interpreted scripting language over a compiled 

language today. Another advantage of Python is that it is 
much simpler than in most other environments rather than 

interfacing legacy software written in Fortran, C, and C++. 

This is because Python was designed to be extendible with 

compiled code for efficiency, and several tools are 

available which make the integration of Python and its 

libraries easier. So with the above properties and the 

interfacing capabilities, the Python represents a best 
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environment for doing parallel programming for 

computational science [11]. The language has already 

attracted significant interest among computational 

scientists for some years. A key question for the 

community is numerical efficiency of Python-based 

computing platforms. The aim of this paper is to quantify 

such numerical efficiency [2]. 

It is also need to be mentioned that Python is being used in 
a much broader context than scientific programming only. 

In computer science, the language has a strong and 

steadily increasing position as a general-purpose 

programming tool for diverse places such as system 

administration, dynamic web sites, distributed systems, 

software Engineering, graphical user interfaces, 

computational steering, search engines, education and also 

in large-scale business applications. Investigating a 

scientific problem with the aid of computers requires 

software which performs a vast range of different tasks: 

user interfaces (command line, files, web and the graphical 
windows), I/O management, numerical computing, data 

analysis, visualization, file and directory manipulation, 

and report generation. High computational efficiency is 

normally needed a few of these tasks and the number of 

statements calling for ultimate efficiency is often just a 

few percentage of a whole software package. The non-

numerical tasks are usually more efficiently taken out in a 

scripting environment like Python than in compiled 

languages. The classical scripting way is to let a script of 

python call up stand-alone simulation programs and 

manage the whole computational and data analysis 

pipeline. However as computational scientists and 
Engineers move to the Python, they will probably like to 

implement the numeric in Python. In this paper it is 

explained that how to implement the numeric in Python 

using many techniques with different degrees of 

programming and computational efficiency. 

 

The comparison of performance for Python with 

corresponding implementations in Fortran 77 and C is also 

explained. As we go along, we shall also point out 

inefficient constructs in Python programs. It is fair to say 

that the core of this Python programming language is’nt 
exactly suitable for scientific applications involving 

intensive computations. This is mainly due to slow 

execution of long nested loops and the lack of efficient 

array data structures. However, the add-on package 

Numerical Python, often referred to as NumPy, provides 

contiguous multi-dimensional array structures with a large 

library of array operations implemented efficiently in C. 

The NumPy array evaluating facilities resemble those of 

Matlab, with respect to functions and computational 

efficiency.The problem with slow loops can be highly 

relieved through vectorization i.e., expressing the loop 

semantics via a group of basic NumPy array operations, 
where each problem involves a loop over array entries 

efficiently implemented in C. The same technique is well-

known from programming in Matlab and other interpreted 

environments where loops run slowly. 

Vectorised Python code may still run a way of 3–10 

slower than optimized implementations in pure Fortran or 

C/C++ [7]. In some of cases, or in cases where 

vectorization of an algorithm is inconvenient, 

computation-intensive Python loops should be terminated 

directly to Fortran or C/C ++ . In a Python program one 
cannot distinguish between a function implemented in 

C/C++/FORTRAN and a function implemented in pure 

Python. With the F2PY[9] tool, 

Coupling Python with Fortran is done almost 

automatically. As a conclusion, combining core Python 

with NumPy and Fortran/C/C++ code migration constitute 

a convenient and efficient scientific computing 

environment on serial computers. 

 

II. PERFORMANCE OF SERIAL PYTHON CODES 

 
We will discuss in this paragraph how to manage serial 

scientific applications using Python. In particular, the 

using of efficient array objects from the NumPy package, 

the efficiency of Python for-loops, and mixed-language 

programming will be studied. These issues are also of 

fundamental importance for an efficient parallelization of 

scientific applications in Python, which is to be addressed 

later. For any computation-based applications that are 

implemented in a traditional language, such as Fortran 77 

or C, the main data construction are normally made up of 

arrays. The central of the computations is in the form of 

traversing the arrays and carrying out computing 
operations in (nested) loops, such as do-loops in 

FORTRAN and for-loops in C. Therefore, our efficiency 

investigations in the present section focus on the typical 

loops that are used as the building blocks in scientific 

codes. Array computing in Python employ the NumPy 

package. This package has a primary module defining the 

array data structure and efficient C functions operating on 

arrays. Presently two basic versions of this module exist. 

Numeric is long established module from the mid 1990s, 

while numarray is a more proper new implementation. The 

latter is meant as a replacement of the former, and no 
further development [8] of Numeric takes place. However, 

there are many numerical Python [2] code utilizing 

Numeric than we expect both modules to co-exist for more 

time. A lot of scripts written for Numeric will 

automatically work for numarray, since the programming 

interface of the two modules are very same. However, 

there are unfortunately some differences between Numeric 

and numarray, which may require manual editing to 

replace one module by the other. (The 

py4cs.numpytoolsmodule helps writing scripts that can 

run unaltered with both modules.) Many tools for 

scientific computing with Python, including the F2PY [9] 
program and pyparmodule to be used later in this paper.  

The very useful SciPy package with lots of numerical 
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computing functionality also works best with Numeric. 

Therefore, most of the experiments reported in this paper 

involve Numeric. 

All experiments reported in this section are collected in 

software that can be downloaded and executed in own 

computing environment. The source code files also 

document precisely how our experiments are implemented 

and conducted. 
 

 
 

The arange function allocates a NumPy array with values 
from a start value to a stop value with a specified 

increment. Showing a double precision real-value array of 

lengthis done by the zeros (n, Float) call. Traversing an 

array can be done by a for loop as shown, where x range is 

a function that returns indices 0, 1,2, and up to the length 

of x in this case. Indices in NumPy arrays always start at 

0. The for-loop in Example 1 requires about 9 seconds on 

our test computer for an array length of one million. As a 

comparison, a corresponding plain for loop in Matlab is 

about 16 times faster than the plain Python for-loop. 

Switching from Numeric to numarray increases the 

CPU[5] time by 32% 
 

 
 

In the present example, there is no need to allocate y 

beforehand, because an array is created by the vector 

Expression sin(x)*cos(x)+ x**2. Table 1 shows 

performance results for various vectorized versions and 

other implementations of the present array computation. 

From Table 1 we see that this vectorized version runs 
about 9 times faster than the pure Python version in 

Example 1. 

The reader should notice that the expression 

sin(x)*cos(x)+ x**2 works for both scalar and array 

arguments. (In contrast, Matlab requires special operators 

like.* for array arithmetics.) We can thus write a function 

I(x), which evaluates the expression for both scalar and 

array arguments, as illustrated below. 

 

 
 

The function call I(x[i]) in the above for-loop adds an 

overhead of about 8% compared with inlining the 

mathematical expressions in Example 1. In general, 

function calls in Python are expensive. 

 

III. PARALLELIZING SERIAL PYTHON CODES 

 
Before running on any parallel [11] program on a 

computing machine, a serial program must be parallelized 

first. In this section, we will explain how to parallelize 

serial structured Python [13] computations. Here we will 

see that the high-level programming of Python [13] gives 

rise to parallel codes [12] of a clean and compact style. 

 

A. Parallelization in Message-passing [10] There 

are several different programming approaches to 

implementing parallel [11] programs. In this paper, 

however, we have chosen to restrict our attention to 

message-passing[10] based parallelization . This is 
because the message-passing[10] approach is most widely 

used and has advantages with respect to both performance 

and flexibility. We note that a message between two 

neighboring processors contains simply a sequence of data 

items, typically a vector of numerical values. For example 

of message passing[10] programming, let us consider the 

simple case of parallelizing a five-point-stencil operation, 

which is in fact a two-dimensional simplification. That is, 

the stencil operation is carried out on the entries of a two-

dimensional global array um, and the results are stored in 

another two-dimensional global array u. 
 

Work Load Division. 
The first step of parallelizing the five-point-stencil 

operation is to divide the computational work among P 

processors, which are supposed to form an Nx×Ny=P 

lattice. A straight forward work division is to partition the 

interior array entries of u and um disjointly into P=Nx×Ny 

small rectangular portions, using horizontal and vertical 

“cutting lines”. If the dimension of u and um is 

(nx+1)×(ny+1), then the (nx−1)×(ny−1)interior entries are 

divided into Nx×Nyrectangles. For a processor identified 
by an index tuple (l, m), where l<Nx and m<Ny, it is 

assigned with (nlx−1)×(nmy−1)interior entries. Load 

balancing requires that the processors have approximately 
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the same work amount, i.e., nlx−1≈(nx−1)/Nxand 

nmy−1≈(ny−1)/Ny. 

 

Local Data Structure 
The above work division means that processor (l, m) is 

only responsible for updating (nlx−1)×(nmy−1)entries of 

u. To avoid having to repeatedly borrow um values from 

the neighboring processor when updating those u entries 
lying immediately beside each internal boundary, as 

depicted in Fig. 1, the data structure of the local arrays 

should include one layer of “ghost entries” around the 

(nlx−1)×(nmy−1) assigned entries. That is, two local two-

dimensional arrays u_loc and um_loc, both of dimension 

(nlx+1)×(nmy+1), areused on processor(l, m). Note that no 

processor needs to construct the entire u and um arrays, 

and that computing the layer of ghost entries in u_loc is 

the responsibility of neighboring processors. 

 

Local Computation 
Assuming that the dimensions nlx and nmy are 

represented as variables nx_loc and ny_loc in a 

Python[13] program. The parallel[11] execution of a five-

point-stencil operation, distributed on P=Nx×Ny 

processors, can be implemented as the following 

Python[13] code segment: 

 

 
Example 4.  F2PY python implementation in Local 

computation 

 

 
Fig1. Local Python implementation of a five-point-stencil 

 

Need for Communication 
After the code segment in fig1. is concurrently executed 

on each processor, we have only updated the 

(nlx−1)×(nmy−1) interior entries of u_loc . In a typical 

parallel application[12], the u_loc array will probably 
participate in later computations, with a similar role as that 

of the um_loc array in Example 4. Therefore, we also need 

to update the layer of ghost entries in u_loc . This 

additional update operation means that two and two 

neighboring processors exchange values across their 

internal boundary. More specifically, when processor (l, 

m)has a neighbor (l+1,m)in the upper x-direction (eg. 

l<Nx-1), processor(l, m) needs to send a vector containing 

values of u_loc[nx_loc-1,:], as a message, to 

processor(l+1,m). In return, processor (l, m) receives a 

vector of values from processor (l+1,m), and these 

received values are assigned to the entries of 
u_loc[nx_loc,:]. This procedure of message exchange [10] 

across an internal boundary has also to be carried out with 

each of the other possible neighbors, i.e. processors 

(l−1,m),(l, m+1), and (l, m−1). 

 

IV. PYTHON IMPLEMENTATION OF 

PARALLELIZATION TASKS 

 

Although the parallelization example from Section III is 

extremely simple, it nevertheless demonstrates the 

generic tasks that are present in any parallel[11] numerical 
code[2] . Using an abstract description, we can summarize 

thesegeneric tasks as follows: 

Workload partitioning, i.e., divide the global data into 

local data to be owned exclusively by the processors 

Serial computations using only local data items on each 

processor 

1) Preparation of the outgoing messages, i.e., extract 

portions of some local data into vectors of values, 

where each vector works as a message 

2) Message exchange between neighboring processors 

3) Extraction of the incoming message 

4) Update portions of some local data (e.g. the ghost 
entries) using values of the incoming messages of the 

above five generic tasks, the first task normally only 

needs to be executed once, in the beginning of a 

parallel application, whereas the second task concerns 

purely serial codes. Therefore, under the assumption 

that the serial codes have good serial performance, the 

overall performance of a parallelized application 

depends heavily on the last three tasks. We will show 

in this section how these communication related tasks 

can be implemented in Python. The efficiency of the 

parallel [12] Python[13] implementation is studied by 
detailed measurements. 

Our attention will be restricted to parallelizing numerical 

applications that are associated with structured 

computational meshes. This is because ensuring the 

parallelization quality of an unstructured computing 

application requires the same principles as for a structured 

computing application. Like a structured computing 

application, an unstructured computing application also 

uses arrays to constitute its data structure. The typical 

difference is that an unstructured computing application 

only uses flat one-dimensional arrays, and traversing the 

entries of an array is often in an unstructured fashion, and 
the number of neighbors may also vary considerably from 

processor toprocessor. 
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V PYTHON MPI BINDINGS THROUGH PYPAR 

 

Let us start with looking at message exchanges between 

the processorsin a Python [13] program. For the purpose 

of efficiency, we have chosen thepyparpackage because 

of its light-weight implementation and user-friendly 

syntax. As we have mentioned before, the pyparpackage 

provides a Python[13] wrapper of a subset of the standard 
MPI routines. The underlying implementation of pyparis 

done in the C programming language, as an extension 

module that can be loaded into Python. The following is 

an example of using the two most important functions in 

pypar, namely pypar.sendand pypar.receive: 

 

 
Example 5 Functions of pypar 

 

In the following Example 6 there is Array Slicing in 

Preparing and Extracting Messages is shown.When 

parallelizing array-based structured computations, 

 

 
Example 6. Array Slicing in Preparing and Extracting 

Messages 

 

we only use portions of a local array (such as its ghost 

layer) in the message exchanges. The slicing functionality 
of NumPy arrays is very important for both the task of 

preparing an outgoing message and the task of extracting 

an incoming message. The resulting Python 

implementation is extremely compact and efficient. Let us 

give a pyparimplementation of the operation that updates 

the ghost layer of the local two-dimensional array u_loc, 

which is needed after executing the code as given above in 

example 6. It should be noted that the above example has 

merged together the three generic tasks, namely preparing 

outgoing messages, exchanging messages, and extracting 

incoming messages. The actual sequence of invoking 

thesend and receive commands may need to alternate from 

processor to processor for avoiding dead locks. It is of 

vital importance for the performance to use the slicing 
functionality to prepare outgoing messages, instead of 

using for -loops to copy a desired slice of a multi-

dimensional array, entry by entry, into an outgoing 

message. Similarly, extracting the values of an incoming 

message should also be accomplished by the slicing 

functionality. For a receive command that is frequently 

invoked, it is also important to reuse the same array object 

as the message buffer, i.e., buffer_x for the x-direction 

communication and buffer_y for the y -direction. These 

buffer array objects should thus be constructed once and 

for all, using contiguous underlying memory storage. The 
measurements in Section V will show that the array slicing 

functionality keeps the extra cost of preparing and 

extracting messages at an acceptably low level. This is 

especially important for parallel [12] three-dimensional 

structured computations. 

 

A Simple Python Class Hierarchy using box 

partitioning 
We can observe that four of the five generic tasks in most 

parallel numerical applications are independent of the 

specific serial computations. Therefore, to simplify the 

coding effort of parallelizing array-based structured 
computations, we have devised a reusable class hierarchy 

in Python. The name of its base class is BoxPartitioner, 

which provides a unified Python interface to the generic 

task of work load partitioning and the three generic 

communication-related tasks. In addition to several 

internal variables, two of the major functions in 

BoxPartitionerare declared as: 

i. Prepare_communication 

ii. Update_internal_boundaries.  

The first function is for dividing the global computational 

work and preparing some internal data structures (such as 
allocating data buffers for the incoming messages), 

whereas the latter is meant for the update operation 

 

VI CONCLUSION 

 

The discussion and analysis presented, together with the 

measurements in Section V, given us reasons to believe 

that Python is sufficiently efficient for scientific 

computing. However, “Python” implies in this context the 

core language together with the Numerical Python [2] 

package and frequent migration of nested loops to C/C++ 

and Fortran extension modules. In addition, the 
programmer must avoid expensive constructs in Python. In 

data structures we should use Python arrays and 
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computation-intensive code segments with compiled code, 

either in a ready-made library such as Numerical Python 

or in tailored C/C++ or FORTRAN code. Moreover, the 

fully comparable measurements of Python-related parallel 

wave [4] simulations against a pure C implementation also 

encourage the use of Python in developing parallel 

applications. The results obtained in this paper suggest a 

new way of creating future scientific computing 
applications. Python, with its clean and simple syntax, 

high-level statements, numerous library modules, 

vectorization capabilities, bindings to MPI, can be used in 

large portions of an application where performance is not 

first priority or when vectorized expressions are sufficient. 

This will lead to shorter and more flexible code, which is 

easier to read, maintain, and extend. The parts dealing 

with nested loops over multidimensional arrays can be 

migrated to a compiled extension module using python. 

Our performance tests show that such mixed-language 

applications may be as efficient as applications written 
entirely in low level C or Fortran 77. 
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